skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ryker, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs. 
    more » « less
  2. We tested the impact of a 15-minute VR training on spatial skills and performance on a geoscience task with a control group. The VR group improved more on the Water Level Task-a measure of understanding of horizontal (B = 0.68, p=0.008). Both groups performed equally on the geology task, except for an orientation rule not well instructed in the VR module (B = -1.33, p=0.0057). In the post-survey, the VR group reported higher ability to link knowledge (X2=4.45, p=0.035) and more interest than in past activities (X2=8.47, p=0.004). This is encouraging, given the brevity of the VR lesson. 
    more » « less
  3. Measuring strike and dip is a common but complicated spatial task introduced to students in undergraduate geology courses. Students must employ multiple spatial reasoning skills in addition to geology-specific content knowledge. These spatial skills include disembedding - to recognize a suitable bedding or foliation plane to measure, spatial perception - to understand the plane’s relationship to horizontal and vertical, and aspects of spatial visualization, perspective taking, and mental rotation to determine how to position and read the compass tool. We tested a virtual reality (VR) training module to help teach the use of the compass tool to measure strike and dip. Students in a large introductory course in a public university were placed by lab section into either a “standard” classroom instruction or VR instruction for their initial training, then all completed a simplified mapping exercise in which they measured five planes set up around the classroom. Pre and post tests of spatial skills and scores on the measurement portion of the map assignment were collected and compared between the 2 types of training groups. Of 12 lab sections, half were assigned to VR and the other half to standard. The instructional assistants each taught at least one section of each type, and the instruction types were distributed evenly across the scheduled lab times. The VR group showed 11% higher improvement scores on the Water Level Task (WLT) compared to the standard group (p = 0.008, n=159). Because students in some lab sections had identical responses to the strike and dip task, we used a subset of four lab sections in which students submitted unique responses (n=41). We found no significant differences on the strike and dip task except with application of the right hand rule (RHR). The classroom instruction group performed 26% higher on the strike task when the RHR was taken into account (p = 0.006), but this difference does not persist when scoring is agnostic to the RHR. The VR module contains only a text explanation of the RHR. These results suggest that VR is at least as good as classroom instruction for building geology skills and, through targeted instruction, can significantly impact performance on a spatial test. Feedback on the VR activity will be used to further refine the module and develop best practice strategies for VR spatial training. 
    more » « less
  4. Abstract Practitioners and researchers in geoscience education embrace collaboration applying ICON (Integrated, Coordinated, Open science, and Networked) principles and approaches which have been used to create and share large collections of educational resources, to move forward collective priorities, and to foster peer‐learning among educators. These strategies can also support the advancement of coproduction between geoscientists and diverse communities. For this reason, many authors from the geoscience education community have co‐created three commentaries on the use and future of ICON in geoscience education. We envision that sharing our expertise with ICON practice will be useful to other geoscience communities seeking to strengthen collaboration. Geoscience education brings substantial expertise in social science research and its application to building individual and collective capacity to address earth sustainability and equity issues at local to global scales The geoscience education community has expanded its own ICON capacity through access to and use of shared resources and research findings, enhancing data sharing and publication, and leadership development. We prioritize continued use of ICON principles to develop effective and inclusive communities that increase equity in geoscience education and beyond, support leadership and full participation of systemically non‐dominant groups and enable global discussions and collaborations. 
    more » « less
  5. We compared 236 geoscience instructors’ histories of professional development (PD) participation with classroom observations using the Reformed Teaching Observation Protocol (RTOP) that describe undergraduate classes as Student-Centered (score ≥ 50), Transitional (score 31–49) or Teacher-Centered (score ≤ 30). Instructors who attended PD (n = 111) have higher average RTOP scores (44.5 vs. 34.2) and are more frequently observed teaching Student-Centered classes (33% vs. 13%) than instructors with no PD (p < 0.001). Instructors who attended PD that is topically-aligned with content taught during the classroom observation are likely to have RTOP scores that are higher by 13.5 points (p < 0.0001), and are 5.6 times more likely to teach a Student-Centered class than instructors without topically-aligned PD. Comparable odds of teaching Student-Centered classes (5.8x) occur for instructors who attended two topical PD events but were observed teaching a different topic. Models suggest that instructors with at least 24 h of PD are significantly more likely to teach a Student-Centered class than instructors with fewer hours. Our results highlight the effectiveness of discipline-specific PD in impacting teaching practices, and the importance of attending more than one such PD event to aid transfer of learning. 
    more » « less
  6. null (Ed.)
    The construct of active learning permeates undergraduate education in science, technology, engineering, and mathematics (STEM), but despite its prevalence, the construct means different things to different people, groups, and STEM domains. To better understand active learning, we constructed this review through an innovative interdisciplinary collaboration involving research teams from psychology and discipline-based education research (DBER). Our collaboration examined active learning from two different perspectives (i.e., psychology and DBER) and surveyed the current landscape of undergraduate STEM instructional practices related to the modes of active learning and traditional lecture. On that basis, we concluded that active learning—which is commonly used to communicate an alternative to lecture and does serve a purpose in higher education classroom practice—is an umbrella term that is not particularly useful in advancing research on learning. To clarify, we synthesized a working definition of active learning that operates within an elaborative framework, which we call the construction-of-understanding ecosystem. A cornerstone of this framework is that undergraduate learners should be active agents during instruction and that the social construction of meaning plays an important role for many learners, above and beyond their individual cognitive construction of knowledge. Our proposed framework offers a coherent and actionable concept of active learning with the aim of advancing future research and practice in undergraduate STEM education. 
    more » « less